Unit 10 Calend	Name:	
Day	Date	Assignment (Due the next class meeting)
Tuesday Wednesday	$\begin{aligned} & \text { 3/29/22 (A) } \\ & 3 / 30 / 22 \text { (B) } \\ & \hline \end{aligned}$	10.1 Worksheet Properties of Exponents \& Base e
Thursday Friday	$\begin{gathered} \hline 3 / 31 / 22 \text { (A) } \\ 4 / 1 / 22 \text { (B) } \end{gathered}$	10.2 Worksheet Graphing Exponential Functions \& Base e (Day 1)
Monday Tuesday	$\begin{aligned} & \text { 4/4/22 (A) } \\ & 4 / 5 / 22 \text { (B) } \end{aligned}$	10.3 Worksheet Graphing Exponential Functions (Day 2)
Wednesday Thursday	$\begin{aligned} & \hline \text { 4/6/22 (A) } \\ & 4 / 7 / 22 \text { (B) } \end{aligned}$	10.4 Worksheet Changing the Base of an Exponential Function
Friday Monday	$\begin{aligned} & \hline 4 / 8 / 22 \text { (A) } \\ & 4 / 11 / 22 \text { (B) } \end{aligned}$	10.5 Worksheet Modeling with Exponential Functions (Growth and Decay)
Tuesday Wednesday	$\begin{aligned} & 4 / 12 / 22(\mathrm{~A}) \\ & 4 / 13 / 22(\mathrm{~A}) \\ & \hline \end{aligned}$	10.6 Worksheet Solving Exponential Equations
Thursday Friday	$\begin{aligned} & \hline 4 / 14 / 22 \text { (A) } \\ & 4 / 15 / 22 \text { (B) } \end{aligned}$	Unit 10 Practice Test
Tuesday Wednesday	$\begin{aligned} & \text { 4/19/22 (A) } \\ & \text { 4/20/22 (B) } \end{aligned}$	Unit 10 Review
Thursday Friday	$\begin{aligned} & 4 / 21 / 22(\mathrm{~A}) \\ & 4 / 22 / 22(\mathrm{~B}) \\ & \hline \end{aligned}$	Unit 10 Test

* Be prepared for daily quizzes.
* Every student is expected to do every assignment for the entire unit.
* Try www.khanacademy.org if you need help outside of school hours.
* Student who complete 100% of their homework second semester on-time will receive a pizza party and 2% bonus to their grade!
* Don't forget about the webpage: www.washoeschools.net/drhsmath

10.1 Notes: Properties of Exponents \& Base e

Let a and b be real numbers and let m and n be integers

Product of Powers	$a^{m} \bullet a^{n}=$	
Power of a Power	$\left(a^{m}\right)^{n}=$	
Power of a Product	$(a b)^{m}=$	
Negative Exponent	$a^{-m}=$	
Zero Exponent	$a^{0}=$	
Quotient of Powers	$\frac{a^{m}}{a^{n}}=$	
Power of a Quotient	$\left(\frac{a}{b}\right)^{m}=$	

Examples: Simplify.

1) $\left(x^{3} y^{6}\right)^{3}$
2) $\left(x^{3}\right)^{2} \cdot\left(x y^{2}\right)^{4}$
3) $\left(x^{2} y^{-6}\right)^{7}$
4) $\left(2 a^{2} b^{8}\right)^{0}$

Try one of the following:
a) $\left(x^{2} y^{7}\right)^{6}$
b) $\left(x^{-2} y\right)^{3} \cdot y^{4}$
c) 15^{0}

Examples: Simplify.

5) $\frac{x^{5} y^{2}}{x^{15} y^{8}}$
6) $\left(\frac{a^{4}}{b^{2}}\right)^{2}$
7) $\left(\frac{r^{-2}}{s^{3}}\right)^{-3}$
8) $\frac{c \cdot c^{4}}{c^{2}}$

Try one of the following:
a) $\frac{x^{7} y^{16}}{x^{15} y^{12}}$
b) $\left(\frac{q^{7}}{r^{-2}}\right)^{4}$

Examples: Simplify.
9) $\frac{16 m^{4} n^{-5}}{2 n^{-5} m^{7}}$
10) $\frac{x^{2} y^{-3}}{\left(2 x^{3} y^{-2}\right)^{2}}$
11) $\frac{4^{2} \cdot 64^{3}}{4^{4}}$

Try one of the following!
a) $\frac{\left(a^{2} b^{4}\right)^{2}}{a^{-3} b}$
b) $\frac{24 x y^{6}}{4 x^{-2} y^{4}}$
c) $\frac{4^{8} \cdot 2^{2}}{2^{20}}$

The Natural Base e :

Examples: Simplify the following expressions.
12) $3 e^{2} \cdot 6 e^{5}$
13) $\frac{18 e^{4}}{9 e^{3}}$
14) $\left(-4 e^{-5 x}\right)^{3}$

Try one of the following!
a) $-5 e^{3} \cdot 2 e^{6}$
b) $\frac{24 e^{4}}{6 e^{3}}$
c) $\left(-3 e^{-4 x}\right)^{2}$

10.2 Notes: Graphing Exponential Functions \& Base e (Day 1)

Graphing Exponential Functions:

What happens when we change b (when $b>1$)?
Graph each of the functions on the graphing calculator. Sketch your results on the graph provided.
a. $\quad y=2^{x}$
b. $\quad y=e^{x}$
b. $\quad y=3^{x}$
c. $y=4^{x}$
d. $y=10^{x}$

Graphing $f(x)=a b^{x-h}+k$, when $b>1$ (Exponential Growth)

What happens when we change $h \& k$?
Graph the following exponential equation. Explain how the graph is transformed from the parent function $f(x)=2^{x}$. Also, state the domain and range for each function \& describe the end behavior.

$$
f(x)=2^{x+1}+2
$$

Transformation:

Domain:

Range:

End Behavior:

How does the graph of the exponential function change as $\boldsymbol{h} \& \boldsymbol{k}$ changes?

How does the graph of the exponential function change as the base \boldsymbol{b} changes?

What happens when we change a ?
Graph each function on the graphing calculator. Sketch your results on the graph provided.
a. $\quad f(x)=4^{x}$
b. $\quad g(x)=3(4)^{x}$
c. $\quad h(x)=\frac{1}{2}(4)^{x}$

Compare the parent graph, $f(x)$, with $g(x) \& h(x)$. What is the domain, range, \& end behavior for each graph? What do you notice about the \boldsymbol{y}-intercepts?

How does the graph of the exponential function change as a changes?

Steps to Graph Exponential Functions:

Examples

Graph each exponential function. Describe the domain $\&$ range.

1. $y=3^{x}$

Domain:

Range:	Range:

Try one of the following:
3. $y=3^{x-1}$

Domain:
Range:
4. $y=4^{x-2}+5$

Domain:
Range:

Examples

Graph each exponential function. Describe the domain \& range.

5. $y=2 \cdot 3^{x}$

Domain:

| Range: |
| :--- | :--- |

6. $y=-1 \cdot 4^{x+2}-3$

Domain:
Range:

Try one of the following:

7. $y=4 \cdot 3^{x-1}$

Domain:

Range:	Range:

9. When evaluating the function $\mathrm{f}(\mathrm{x})=2^{\mathrm{x}-4}$ for any real number x , what must be true about the value of $f(x)$?
A. The value of $f(x)$ is always negative
C. The value of $f(x)$ is always greater than 4
B. The value of $f(x)$ is always positive
D. The value of $f(x)$ is always less than 4

10.3 Notes: Graphing Exponential Functions (Day 2)

Graphing $f(x)=a b^{x-h}+k$, when $0<b<1$ (Exponential Decay)

	Graph the Function: $f(x)=\left(\frac{1}{2}\right)^{\boldsymbol{x}}$
\square	x y (x, y)
$\xrightarrow{\longrightarrow}$	-2
$->$	-1
-	0
$-\times-$	1
$\square-$	2
(in set notation) Domain:	y-intercept: Horizontal Asymptote:
Range:	

As your go right, are the values increasing or decreasing?

Is this exponential growth or decay? Why?

What happens when we change $h \& k$ (when $0<b<1$)?

Graph each of the following functions on the graphing calculator. Sketch your results on the graph provided. Describe the transformation from the parent function, $f(x)$, when you change $h \& k$.
a. $\quad f(x)=\left(\frac{1}{2}\right)^{x}$
b. $\quad g(x)=\left(\frac{1}{2}\right)^{x-2}$
c. $\quad h(x)=\left(\frac{1}{2}\right)^{x+1}-3$

Vertical \& Horizontal Reflections

Use the graphing calculator to graph each of the following functions.
a. $y=2^{-x}$
b. $y=3^{-x}$
c. $y=e^{-x}$
d. $y=\left(\frac{1}{2}\right)^{x}$
e. $y=\left(\frac{1}{3}\right)^{x}$
f. $y=e^{x}$

Which of these are exponential growth functions?

Which of these are exponential decay functions?

Examples:

1. The graph $f(x)=2^{x}$ is translated two (2) units up, four (4) units right, \& has a vertical reflection (reflected across the x-axis). Write the equation of the function after the transformation.
2. The graph $f(x)=e^{x}$ is translated down five (5) units. Write the equation of the function after the transformation.

You try!
3. The graph of $f(x)=\left(\frac{1}{2}\right)^{x}$ is translated two (2) units to the right, three (3) units up, and has a vertical stretch by a factor of four (4). Write the equation of the function after the transformation.

Examples:

Graph each exponential function. Describe the domain \& range.
4. $y=\left(\frac{1}{2}\right)^{x+3}$

5. $y=-\left(\frac{1}{3}\right)^{x-2}-4$

Domain
Range:

in:
Domain:
Range:
Range:

Try on of the following!
6. $y=-\left(\frac{1}{2}\right)^{x}+2$

7. $y=\left(\frac{1}{3}\right)^{x+3}+5$

Domain:
Domain:
Range: \quad Range:

Examples:

Which of the following functions are examples of exponential growth \& which are examples of exponential decay? Why?
8. $f(x)=0.25(4)^{x}$
9. $h(x)=0.9^{x}$
10. $g(x)=\left(\frac{3}{2}\right)^{-x}$
11. $s(x)=\frac{2}{3}(e)^{x}$

Try one of the following:
12. $k(x)=\left(\frac{2}{3}\right)^{x}$
13. $p(x)=\left(\frac{2}{3}\right)^{-x}$

10.4 Notes: Changing the Base of Exponential Functions

Use your graphing calculator to compare $f(x) \& g(x)$.
What do you notice about the graphs of each pair?

Use the properties of exponents to explain why $f(x)=g(x)$

	$\boldsymbol{f}(\boldsymbol{x})$	$\boldsymbol{g}(\boldsymbol{x})$
A	$f(x)=2^{3 x}$	$g(x)=8^{x}$
B	$f(x)=\left(\frac{1}{2}\right)^{2 x}$	$g(x)=\frac{1}{4}^{x}$
C	$f(x)=\left(\frac{3}{2}\right)^{x}$	$g(x)$ $=\left(\frac{2}{3}\right)^{-x}$

Example:

Write each of the following exponential functions as the same function with a different base.

1. $f(x)=2^{5 x}$
2. $g(x)=25^{x}$

Try these!
$3 \quad f(x)=3^{3 x}$
4. $f(x)=16^{x}$

Example:

5. Which of the following would NOT produce the same graph as $g(x)=729^{x}$?
A. $h(x)=3^{6 x}$
B. $h(x)=9^{3 x}$
C. $h(x)=6^{4 x}$
D. $h(x)=27^{2 x}$

Rational Roots

Rational Exponents: $\quad a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
Simplify:
a. $x^{4 / 3}$
b. $x^{5 / 2}$
c. $6^{5 / 3}$

Think back to previous units...apply properties \& rules that we have learned about to simplify the following problems as best you can with a partner.
6. $9^{\frac{1}{2}} \cdot 9^{\frac{3}{2}}$
7. $\frac{3^{\frac{5}{6}}}{3^{\frac{1}{3}}}$
8. $\sqrt[5]{27} \cdot \sqrt[5]{9}$

Examples:

Simplify the following expressions. Assume all variables are positive values.
9. $\frac{16^{2}}{2^{3}}$
10. $\frac{3^{2} \cdot 9^{3}}{3^{4}}$
11. $x^{3 / 4} \cdot y^{2 / 3} \cdot x^{3 / 4} \cdot \sqrt[3]{y}$
12. $\frac{a^{1 / 3 \sqrt{b}}}{a^{4 / 3} b^{1 / 2}}$
13. $\left(\frac{a^{4} b^{2 / 3} c^{1 / 5}}{a^{6} b^{1 / 3} c^{2 / 5}}\right)^{5}$
14. $\left(\frac{-2 x^{3} y^{1 / 3}}{3 x^{2 / 3} y^{2 / 3}}\right)^{3}$

Try one of the following!
Simplify the following expressions. Assume all variables are positive values.
15. $\left(\frac{5^{2}}{5^{4}}\right)^{\frac{3}{2}}$
16. $\frac{64^{1 / 2 \cdot 4}}{4^{3}}$
17. $\left(\frac{-3 \sqrt{a} \cdot b^{3 / 4}}{4 a^{5 / 2} b^{1 / 4}}\right)^{2}$

10.5 Notes: Modeling with Exponential Functions

Exponential Growth \& Decay
Exponential Growth Formula: $A(t)=A_{o}(1+r)^{t}$

Exponential Decay Formula: $A(t)=A_{o}(1-r)^{t}$

Vocabulary

- Principle:
- Initial Amount:
- Rate:

- Compound Interest:

- Compounded Annually
- Compounded Quarterly
- Compounded Monthly
- Compounded Weekly
- Compounded Daily
- Compounded Continuously

Example 1:

Janelle invests $\$ 5000$ in an account that earns interest at a rate of 2% compounded annually.
a. Is this exponential growth or exponential decay?
b. Write the function that gives the balance in the account after t years.
c. Graph the function.
d. Find the balance after 6 years.

YOU TRY!

Example 2:

A bacteria population starts at 2,032 and decreases at about 15% per day. Graph the function.
Then predict how many bacteria there will be after 7 days.
a. Is this exponential growth or exponential decay?
b. Write a function representing the number of bacteria present each day.
c. Graph the function.
d. Find the number of bacteria after 7 days.

Example 3:

The rate at which caffeine is eliminated from the bloodstream of an adult is about 15% per hour. An adult drinks a caffeinated soda, and the caffeine in his/her bloodstream reaches a peak level of 30 milligrams.
a. Is this exponential growth or exponential decay?
b. Write the function that gives the remaining caffeine at t hours after the peak level.
c. Graph the function.
d. Find the amount of caffeine remaining after 4 hours 5

Example 4:

Keiko invests $\$ 2700$ in an account that earns 2.5% annual interest compounded continuously. How much money will she have in her account after 5 years? Use $\boldsymbol{A}(\boldsymbol{t})=\boldsymbol{P} \boldsymbol{e}^{r \boldsymbol{t}}$.

Example 5:

You deposit $\$ 5000$ in an account that earns 3.5% compounded quarterly. How much money will you have after 3 years? Use $\boldsymbol{A}(\boldsymbol{t})=\boldsymbol{P}\left(\mathbf{1}+\frac{r}{n}\right)^{\boldsymbol{n t}}$; where n is the number of times per year at an investment is compounded.

You try these!

Example 6:

Miguel invests $\$ 4800$ at 1.9% annual interest compounded continuously. How much money will he have in his account after 3 years? Use $\boldsymbol{A}(\boldsymbol{t})=\boldsymbol{P} \boldsymbol{e}^{r \boldsymbol{t}}$.

Example 7:

Sarah deposits $\$ 10,500$ in an account that earns 6.7% compounded daily. How much money will Sarah have after 7 years? Use $\boldsymbol{A}(\boldsymbol{t})=\boldsymbol{P}\left(\mathbf{1}+\frac{r}{n}\right)^{\boldsymbol{n t}}$

10.6 Notes: Solving Exponential Equations

Property of Equality for Exponential Equations:

Work with a partner and try to find the value of \boldsymbol{x}. Be prepared to share your process with the class.

$$
2^{x+4}=2^{2 x+3}
$$

Examples: Solve for x and check your solutions.

1) $2^{x-1}=32$
2) $e^{3 x}=e^{x+12}$
3) $\frac{1}{64}=4^{2 x-4}$
4) $9^{2 x}=27^{x+1}$

Try one of the following!

5) $15^{2 x-9}=15^{5 x+6}$
6) $2^{3 x+1}=\frac{1}{32}$
7) $16^{3 x}=64^{x+2}$

Examples: Solve each system of exponential equations for x by setting $f(x)=g(x)$. Verify your answers using a graphing calculator.
8. $\left\{\begin{array}{c}f(x)=3 \\ g(x)=27^{x}\end{array}\right.$
9. $\left\{\begin{array}{c}f(x)=5^{2 x} \\ g(x)=125^{x-2}\end{array}\right.$

You try these!

10. $\left\{\begin{array}{c}f(x)=e^{2 x} \\ g(x)=e^{x+5}\end{array}\right.$
11. $\left\{\begin{array}{c}f(x)=4^{x} \\ g(x)=32^{x-3}\end{array}\right.$

Example 12: Use your graphing calculator to solve the following problem
The equation $f(x)=4.1(1.33)^{x}$ models the population of the United States, in millions, from 1790 to 1890. In this equation, x is the number of decades since 1790 , and $f(x)$ is the population in millions. In what year did the population reach 71 million?
a. \quad Let $f(x)=4.1(1.33)^{x} \&$ let $g(x)=71$. To solve for x, find where $f(x)=g(x)$.
b. In what year did the population reach 71 million?

Example 13: Write an exponential function in the form $y=a b^{x}$ whose graph passes through the points $(2,12.5)$ and $(4,312.5)$.

